Project Team: Scott Grieshaber (PI), Nicole Grieshaber, Anders Omsland, Christopher Remien

Chlamydia are obligate intracellular bacteria that cause a range of diseases in both man an animals. Chlamydia like bacteria infect just about all eukaryotic organisms on the planet, from man to amoeba. All Chlamydiae, including the human pathogens C. trachomatis, C. pneumoniae, and C. psittaci, share a conserved developmental cycle. Chlamydia infect cells with a specialized infectious non metabolic cell form and, once inside the cell, differentiate into the replicative but non infectious form. At some point late in the infection the replicative forms differentiate back into the infectious form. The molecular controls for this are not yet known. We would like to use mathematical methods to model the most common hypotheses on what controls differentiation. We envision that we can test predicted outcomes of experimental changes based on these models, and will be able to focus on the molecular mechanisms underlying the best fitting model. We plan on submitting an NIH RO1 proposal to investigate gene control during differentiation in 2016. Including a mathematical modeling component would significantly strengthen the proposal as well as help to focus our efforts.